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Abstract. The thermal stability, phases and phase changes of small carbon clusters and fullerenes are inves-
tigated by constant energy Molecular Dynamics simulations performed over a wide range of temperatures,
i.e., from T = 0 K to above the melting point of graphitic carbon. The covalent bonds between the carbon
atoms in the clusters are represented by the many-body Tersoff potential. The zero temperature structural
characteristics of the clusters, i.e., the minimum energy structures as well as the isomer hierarchy can be
rationalized in terms of the interplay between the strain energy (due to the surface curvature) and the
number of dangling bonds in the cluster. Minimization of the strain energy opposes the formation of cage
structures whereas minimization of the number of dangling bonds favors it. To obtain a reliable picture
of the processes experienced by carbon clusters as a function of temperature, both thermal and dynami-
cal characteristics of the clusters are carefully analyzed. We find that higher excitation temperatures are
required for producing structural transformations in the minimum energy structures than in higher lying
isomers. We have also been able to unambiguously identify some structural changes of the clusters occur-
ring at temperatures well below the melting-like transition. On the other hand, the melting-like transition
is interrupted before completion, i.e., the thermal decomposition of the clusters (evaporation or ejection
of C2 or C3 units) occurs, from highly excited configurations, before the clusters have fully developed a
liquid-like phase. Comparison with experiments on the thermal decomposition of C60 and a discussion of
the possible implications of our results on the growth mechanisms leading to the formation of different
carbon structures are included.

PACS. 36.40.Ei Phase transitions in clusters – 61.48.+c Fullerenes and fullerene-related materials –
82.30.Qt Isomerization and rearrangement

1 Introduction

Looking at the mass spectrum of carbon clusters published
in 1984 by Rohlfing and coworkers [1], one clearly rec-
ognizes the prominent peak corresponding to C60. This
peak in the mass spectrum was not so impressive, though,
as to make anyone guess at that time the uniqueness
of this hollow-cage all-carbon molecule, the buckminster-
fullerene [2] (buckyball for short). Under the right experi-
mental conditions [3] one can produce macroscopic quan-
tities of C60 and the buckyball is, essentially, the only
C60 isomer (among the 1812 possible fullerene isomers of
C60 [4]) present in those macroscopic samples. Puzzling
enough, stability arguments in their own would not predict
nor even justify the preferential formation of the bucky-
ball under certain conditions. One has to bear in mind
that this is not the most stable form of carbon, larger
fullerenes as well as graphite have higher binding energies
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per atom than the buckyball. Moreover, the small energy
difference between the buckyball and other fullerene iso-
mers of C60 (of the order of the energy difference between
graphite and diamond) does not rule out in itself the for-
mation of those isomers in macroscopic quantities. What
makes, then, nature so easily find the way to producing
this highly symmetric molecule?

Even after this, carbon had still a lot of excitement
awaiting us behind the door. Only a few years after the
discovery of fullerenes new carbon structures were ob-
served such as nanotubes [5], onions [6], and, more re-
cently, cones [7]. All these structures have in common be-
ing formed by networks of sp2-bonded carbon which roll
themselves up into ball, tube, or cone structures so as
to minimize the number of dangling bonds. Besides the
basic interest in these network-like carbon structures there
are also well founded expectations of possible practical
applications of some of these novel carbon-based mate-
rials. However, the practical use of any of these mate-
rials would require its production under well controlled
conditions. It is, then, of fundamental concern un-
derstanding the growth mechanisms leading to the
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formation of each of these new carbon structures. As
has been recognized by several authors, fullerenes, tubes,
and other related carbon structures are produced un-
der highly nonequilibrium conditions which makes deter-
mining the growth mechanisms of these nanostructures
extremely difficult.

In this paper we concentrate on the problem of small
carbon clusters and fullerenes. Several growth models of
C60 have been proposed in the literature, e.g. the pen-
tagon road model, the fullerene road model, or the cyclo-
addition model [8]. However, none of these models fits all
the experimental evidence well. Other important draw-
backs of these models are that they neither explain the
absence of other cluster sizes, nor lead to a preferential
formation of the buckyball with respect to other fullerene
isomers of C60. In addition, all these models require, in
the last stages of formation of the buckyball, an anneal-
ing mechanism, involving the rearrangement of pentagons
and hexagons, driving the fullerene isomers of C60 into
the most stable structure, the buckyball, which is the
only 60-atom fullerene having Ih symmetry and no adja-
cent pentagons. Even this last process of annealing the
fullerene structures down to the buckyball is not well
understood. As we have mentioned above, the difficulty
in understanding the formation mechanism of fullerenes
stems from the fact that their production does not take
place under thermal equilibrium conditions but rather it
involves a kinetics-controlled process. As a consequence,
knowing the zero temperature properties of small carbon
clusters and fullerenes is not sufficient for explaining their
production. For instance a genetic algorithm [9] has been
applied successfully for obtaining the minimum energy
structures of several carbon clusters, including C60. How-
ever, this algorithm does not provide any insight into the
growth process. Dynamical simulations on the nucleation
of C60 give qualitative insights to the formation of carbon
fullerenes [10]. Nucleation of C60 has been simulated both
by annealing a hot carbon plasma (formed exactly by 60
carbon atoms in a box) and by monomer addition to a
small carbon seed. These simulations show that cluster-
ing occurs readily (under the right annealing or growth
rate conditions, respectively) producing cage structures
for C60, although not the ground state. Simulations have
also been performed for a few carbon atoms in a box [11].
Under suitable temperature control the simulation pro-
duced several cage structures. One of the cages was a C60

cluster with some dangling bonds, heptagons and neigh-
boring pentagons. When removed from the box and an-
nealed this cluster achieved the perfect Ih symmetry but if
the cluster is left in the original simulation box its growth
continues. The thermal stability and decomposition kinet-
ics of C60 molecules (both in the gas phase [12] and in the
solid state [13,14]) have been studied in order to provide
further understanding on the chemistry of fullerene for-
mation. Learning about the thermal behaviour (including
the possible phases, isomerization transitions and phase
changes) of small carbon clusters and fullerenes [15–19]
would help to understand the processes and mechanisms
leading to the formation of buckyballs, fullerene-like struc-
tures, and other carbon polytypes. This is the primary

goal of this paper. As the first step we have investigated
the zero temperature behaviour, i.e., the possible isomeric
forms, of small carbon clusters and the C60 fullerene using
the thermal quenching procedure. The minimum energy
structures as a function of cluster size and the isomer hi-
erarchy for a given cluster size can be understood in terms
of two single concepts: “curvature” and “dangling bonds”.
Subsequently, we have performed extensive Molecular Dy-
namics simulations to investigate the finite-temperature
behaviour of the clusters. We consider cluster tempera-
tures ranging from T = 0 K up to above the melting point
of graphitic carbon, not only for the minimum energy
structures but also for several relevant isomers. Thermal
characteristics of the clusters such as the caloric curve (ki-
netic temperature vs. total energy), the root mean square
bond length fluctuation, and the specific heat are ana-
lyzed. These magnitudes have proved to be quite informa-
tive about phases and phase changes in dynamical studies
of Lennard-Jones and metal clusters. However, do not re-
flect some of the low-temperature structural transforma-
tions (isomerization transitions) occurring in carbon clus-
ters. Therefore to obtain a more detailed and accurate
picture of the processes experienced by carbon clusters as
a function of temperature, we combine the previous ther-
mal analysis with a dynamical analysis of the trajectories.
The short-time-averaged kinetic energy is a magnitude
more sensitive to the cluster structure. Its time evolution,
then, together with a thermal quenching analysis of the
simulation trajectories, provides information on the time
evolution of the structural changes of the clusters, even
at low temperatures. We find that the minimum energy
structures are more resistant (i.e., higher excitation ener-
gies are needed) to structural changes than higher lying
isomers. On the other hand, some structural transforma-
tions of the clusters are observed at temperatures well
below the melting-like transition. Another salient find-
ing of our investigations is that carbon clusters start to
evaporate atoms or C2 or C3 units before fully developing
a liquid-like phase. However, the thermal decomposition of
the clusters occurs from highly excited configurations, in
agreement with the experimental findings [12,13]. These
and some related thermal features of carbon clusters will
be, for certain, of relevance for understanding and explain-
ing the growth mechanisms of different carbon structures.

The structure of the paper is as follows. In Section 2
we present the many-body interatomic potential, Tersoff
potential, used to describe the interactions between the
carbon atoms in the clusters and some details about the
dynamical simulations performed here. Section 3 presents
the results of the simulations: firstly, the isomer hierarchy
of small carbon clusters and C60 and secondly their ther-
mal behaviour. A discussion of the results is also included.
We finish with some conclusions in Section 4.

2 Theoretical background

In this paper we have performed extensive constant energy
Molecular Dynamics (MD) simulations of small carbon
clusters and fullerenes. From the simulations we extract
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the structural, dynamical and thermal characteristics of
these systems. The time evolution of the system is ob-
tained by integrating numerically (using the velocity ver-
sion of the Verlet algorithm [20]) the classical Newtonian
equations of motion. A time step of 0.2 fs yields conser-
vation of the total energy within 0.01% for trajectories
lasting 2.5× 105 time steps.

Performing MD simulations requires knowledge of the
interatomic interactions between the atoms in the system
under consideration (small carbon clusters and fullerenes
in this case). The interatomic interactions could be ob-
tained, in principle, from ab initio (first principles) cal-
culations. However, this is a very demanding (time con-
suming) task even for not too large systems when one is
concerned with thermal and dynamical properties of the
system. As an alternative one can use a computationally
efficient empirical potential to mimic the interatomic in-
teractions between the atoms in the system. Clearly, the
accuracy and reliability of the chosen potential for de-
scribing the physical system of interest should be carefully
checked.

Throughout this paper we use Tersoff’s potential [21]
to mimic the covalent bond between the carbon atoms in
small clusters and fullerenes. This potential goes beyond
the three-body potentials considered in the literature for
describing covalent systems. The Tersoff potential incor-
porates “effective” many-body interactions following the
bond order ideas introduced by Abell [22]. The bond order
(i.e., the strength of a bond) depends on the local environ-
ment. The leading term of the bond order can be expressed
as a function of coordination. Moreover, an explicit de-
pendence on the bond angles is incorporated in Tersoff’s
potential in order to favor bond angles corresponding to
the sp2 and sp3 hybridizations of carbon. The interatomic
potential is written “formally” as a sum of pairwise inter-
actions

V =
1

2

N∑
i,j(6=i)=1

fc(rij) [fR(rij) + bijfA(rij)] , (1)

where N is the number of atoms in the cluster and fR

and fA represent repulsive and attractive pair potentials,
respectively,

fR(rij) = Ae(−λ1rij) ,

fA(rij) = −Be(−λ2rij) . (2)

The bond order coefficient bij carries the many-body char-
acter of the potential and is written as

bij =
(
1 + βnξnij

)− 1
2n ,

ξij =
N∑

k(6=i,j)=1

fc(rik)g(θijk) ,

g(θijk) = 1 +
c2

d2
−

c2

d2 + (h− cos θijk)2
, (3)

where θijk is the bond angle between the ij and the ik
bonds. A smooth cut-off function fc is used to limit the
range of the potential. In practice this function is chosen
to cut the interactions between the first and the second
neighboring shells. In this work we use a Fermi-type cut-
off function [19]

fc(rij) =
1

1 + e
rij−r0
D

, (4)

with values of the parameters r0 = 2.05 Å and D =
6.13×10−2 Å. The use of this function instead of the orig-
inal cut-off function proposed by Tersoff improves the en-
ergy conservation in the dynamical simulations. The rea-
son being that the Fermi function is derivable with con-
tinuity to all orders whereas the cut-off function used by
Tersoff is derivable with continuity only up to first order.

The values of the parameters of the potential for car-

bon: A = 1393.6 eV, B = 346.74 eV, λ1 = 3.4879 Å
−1

,

λ2 = 2.2119 Å
−1

, β = 1.5724 × 10−7, n = 0.72751,
c = 38049, d = 4.3484, and h = −0.57058, have been
obtained by fitting the potential to the cohesive energies
of several real and hypothetical carbon polytypes (i.e.,
the C2 dimer, graphite, diamond, and the simple cubic,
the body centered cubic, and the face centered cubic lat-
tices) as well as to the lattice constant and bulk modulus
of diamond. In addition a value of the vacancy formation
energy in diamond of at least 4 eV was required. This po-
tential reproduces adequately the structural features and
the energetics of carbon over a wide range of configura-
tions (i.e., coordinations), the elastic moduli and phonon
frequencies of diamond, the in-plane elastic constants of
graphite and the energies of point defects both in diamond
and graphite. This makes this potential reliable also for
cluster studies. However, for the correct interpretation of
the predictions and results obtained using Tersoff’s po-
tential, one should also be aware of its limitations. On the
one hand, linear chains and ring structures, characterized
by large bond angles, are not well described by the Tersoff
potential. The reason being that this potential favors the
formation of bond angles close to 2

3π, characteristic of the

sp2 and sp3 hybridizations of carbon. Consequently, the
results for structures with exposed edges are only qualita-
tive. On the other hand, the melting temperature of car-
bon comes out about 40% higher than the experimental
one [23]. Therefore, when comparing to experiments, the
temperatures presented in this paper should be rescaled
by the corresponding factor.

3 Results and discussion

3.1 Isomer hierarchy

Finite systems at finite temperatures may exhibit many
different geometrical configurations (isomeric forms). For
this reason it is useful to study the possible isomeric
forms of a system before trying to understand its finite-
temperature behaviour. However, as is well known since
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the early days of cluster studies, the number of possible
isomers is huge even for small/medium size clusters (e.g.,
the number of isomers of a 55-atom cluster has been esti-
mated [24] to be 8.3 × 1011). This makes completely out
of scope the calculation of even a fraction of the isomers
of clusters in the size range of a few tens of atoms or
larger. Still one could try to generate a set of isomers,
including eventually the minimum energy structure, suffi-
ciently large for extracting the main structural features of
the clusters and relating them to their thermal behaviour
and, possibly, to their growth mechanisms.

The study of the possible isomeric forms of carbon
clusters remains still an open question [25]. On the one
hand, only a relatively small number of isomers of small
carbon clusters has been studied using first principles cal-
culations. On the other hand, the theoretical predictions
on the relative ordering of the isomers depend strongly on
the level of the theory being used for describing the clus-
ters. In a recent paper Jones and Seifert [26] have studied
a selection of isomers of CN clusters (14 ≤ N ≤ 24, N
even) within the density functional formalism using both
the local spin density approximation (LSD) and gradi-
ent corrections (GC) to the exchange-correlation energy.
For every fixed type of isomer (i.e., monocyclic rings, cage
structures, or graphitic geometries, etc.) both models pro-
duce similar variations in the binding energy as a function
of cluster size. However, the gradient corrections affect
differently two different types of isomers. This results in
a change in the energy ordering of the isomers with re-
spect to the LSD calculations. For instance the minimum
energy structure of C20 and C22 changes from being a
cage in the LSD approximation to a monocyclic ring when
one uses gradient corrections. Hartree-Fock calculations
also predict the monocyclic ring as the minimum energy
structure of C20. However, electronic structure calcula-
tions at the level of MP2 (second-order Moller-Plesset per-
turbation) as well as CCSD(T) calculations [27] (coupled-
cluster calculations with all single and double excitations
and a perturbational estimate of some triple excitations)
give the same minimum energy structure of C20 as LSD,
a hollow cage, which is the smallest topologically possible
fullerene. Still, higher level exchange-correlation function-
als [25] such as B3LYP (Becke three-parameter exchange
with Lee-Yang-Parr correlation) or BPW91 (Becke 1988
exchange with Perdew-Wang 1991 correlation), as well as
quantum Monte Carlo approaches [28] predict the bowl
structure (a portion of the C60 fullerene formed by a pen-
tagonal face surrounded by five hexagons), as the most
stable isomer of C20. The use of semiempirical potentials
for studying the isomer hierarchy of small carbon clusters
is not of help for clarifying this controversy. However, the
use of semiempirical potentials allows one to perform an
extensive search of isomers on the potential energy sur-
face and therefore to extract the underlying rules which
determine the cluster structures.

The search of isomers has been performed using the
“thermal quenching” procedure. This procedure consists
in cooling down high-energy configurations, selected from
high-energy trajectories, into rigid structures correspond-

A

C D

B

2.295 eV

5.134 eV 8.385 eV

Ground State

Fig. 1. Geometry of some selected isomers of C20. The energies
of the isomers (in eV) are measured from the minimum energy
structure (bowl) of C20. A: bowl structure, B: cage structure
with D5h symmetry, C: fullerene structure, and D: diamond-
like structure.

ing to local minima of the potential energy surface. To
obtain a “relevant” set of isomers of small carbon clus-
ters (one has to bear in mind that the number of isomers
for clusters having a few tens of atoms is huge and, conse-
quently, even with the help of semi-empirical potentials, it
is not possible to obtain even a fraction of them) we have
generated high-energy trajectories originating on differ-
ent wells of the potential energy surface corresponding to
different structural types known (or expected) to be rele-
vant for carbon clusters, namely, ring, planar, bowl-type,
hollow cage, and diamond structures. The initial config-
urations for the quenching procedure have been selected
along those trajectories at time intervals corresponding to
a few vibrational periods of the cluster (in practice we
have selected one out of 500 configurations along a tra-
jectory) to give the possibility for configurational changes
of the cluster to occur between successive quenches. As a
result, we have produced a set of about 50 to 100 differ-
ent isomers for each cluster size. Since several “relevant”
regions of the configuration space have been explored, we
believe these sets of isomers to provide at least a qual-
itative picture about the structural properties of carbon
clusters.

In a previous paper [19] we have presented some of
the isomeric forms of C13, C20 and C32 as predicted by
the Tersoff potential. Figures 1 and 2 show a selection of
isomers of C20 and C60, respectively. To understand and
interpret the rules which determine the minimum energy
structures of small clusters as a function of cluster size as
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G H I

J K L

4.030 eV 4.566 eV

A B C

Ground State 0.803 eV 1.119 eV

D E F

2.297 eV 3.010 eV 3.739 eV

3.997 eV

6.393 eV 14.946 eV 21.036 eV

Fig. 2. Geometry of some selected isomers of C60. The energies
of the isomers (in eV) are measured from the minimum energy
structure of C60. A: buckyball, B: isomer obtained from A by
performing a Stone-Wales transformation, C: isomer B with
one open window between two pentagons, D: isomer A with one
open window between a pentagon and a hexagon, E: isomer B
with one open window between a pentagon and a hexagon, F to
I: fullerene-based isomers with several open windows, J: piece
of a graphene sheet, K: tubular-like structure, and L: deformed
bowl-like structure. The arrows indicate some open windows in
the fullerene-like isomers.

well as the isomer hierarchy for a fixed size, it is convenient
to partition the energy in several contributions

V =
N∑
i=1

V ref
i +Estrain , (5)

where V ref
i is the energy of an atom in an appropriately

defined reference system and the strain energy, Estrain,
represents the energy change in the cluster with respect
to the reference system. For systems interacting through
pairwise potentials one can consider the diatomic molecule
as the reference system which allows the introduction of
a rigorous definition of strain energy [29]. The choice of

the reference system for many-body potentials, however,
is not so inmediate since the strength of a bond depends
on the local environment. In the case of carbon structures
based on sp2 networks of carbon it seems reasonable to
choose the perfect graphene sheet as the reference system
for 3-fold coordinated atoms and the edge atoms of a semi-
infinite graphene sheet for 2-fold coordinated atoms (i.e.,
atoms with a dangling bond)

V ref
i =

V graph
i , if i 3-fold coordinated ,

V edge-graph
i , if i 2-fold coordinated ,

(6)

where V graph
i is the energy of an atom in a perfect

graphene sheet and V edge-graph
i is the energy on an edge

atom in a semi-infinite graphene sheet. The cluster energy
can be written as

V =
N∑
i=1

V graph
i +NdE

dangling +Estrain , (7)

where Nd is the number of dangling bonds in the cluster
and the dangling energy Edangling, given by

Edangling = V edge-graph
i − V graph

i , (8)

represents the loss of stability of the cluster (with respect
to a perfect graphene sheet) due to the presence of dan-
gling bonds. Equation (7) constitutes a rigorous definition
of the strain energy for carbon networks. This energy rep-
resents the destabilization of the cluster, with respect to
the reference system(s) due, not only to the change in the
bond lengths, as is the case for pairwise potentials [29],
but also to the surface curvature. Table 1 presents the to-
tal, dangling, and strain energies of the isomers of C20 and
C60 shown in Figures 1 and 2, respectively.

We find that the minimum energy structure of C20

is the bowl isomer (structure A of Fig. 1), in agreement
with the most sophisticated ab initio calculations [25,28].
However, one should not overemphasize this agreement
for the reasons mentioned above. The bowl structure has
ten dangling bonds but the strain energy associated with
the cluster curvature is small (see Table 1). The lowest-
energy isomers of C20 (not shown here) are graphene
sheets and bowl-type structures, either perfect or incor-
porating some defects such as pentagonal or heptagonal
rings. Also low-lying bowl-type isomers are produced by
a window-opening mechanism in which a carbon-carbon
bond breaks giving rise to an 8- or 9-membered ring.
The fullerene isomer (structure C of Fig. 1), although it
has no dangling bonds, comes out 5.13 eV higher in en-
ergy than the bowl minimum energy structure due to the
high strain energy associated with the surface curvature
(Tab. 1). Several cage isomers, lower in energy than the
fullerene, are produced by opening one or several windows
in the fullerene cage which releases partially the strain en-
ergy associated with the presence of adjacent pentagons
in the structure. The lowest-energy cage isomer (which
is 2.29 eV above the minimum energy structure) has D5h
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Table 1. Total energy with respect to the graphene sheet
(third column), number of dangling bonds, Nd, dangling en-
ergy, NdE

dangling, and strain energy, Estrain of the isomers of
C20 and C60 shown in Figures 1 and 2, respectively. All the
energies are given in eV.

Cluster Isomer V −
∑
i V

graph
i Nd NdE

dangling Estrain

C20 A 27.794 10 23.743 4.051
B 30.089 10 23.743 6.346
C 32.928 0 0.0 32.928

C60 A 42.153 0 0.0 42.153
B 42.956 0 0.0 42.956
C 43.272 2 4.749 38.523
D 44.450 2 4.749 39.701
E 45.163 2 4.749 40.414
F 45.892 4 9.497 36.395
G 46.150 4 9.497 36.653
H 46.183 4 9.497 36.686
I 46.719 4 9.497 37.222
J 48.546 20 47.486 1.060

symmetry (structure B of Fig. 1) and can be viewed as the
limiting case in which five windows have been opened in
the fullerene structure. The open-window mechanism also
helps to release the strain energy of the fullerene isomer of
C32. This fullerene lowers its energy in 0.42 eV by break-
ing four carbon-carbon bonds between adjacent pentagons
giving rise to four open windows in the fullerene cage. The
bowl structure (a portion of the C60 fullerene) is 6.59 eV
higher in energy than the minimum energy structure.

It is well established that the minimum energy struc-
ture of C60 is the buckminsterfullerene, the fullerene with
Ih symmetry (structure A of Fig. 2). However, one should
keep in mind that there are 1812 topologically different
fullerene isomers of C60 [4] which differ one from another
only in the relative positions of the 12 pentagons and the
20 hexagons forming the fullerene cage. What makes the
buckyball structure “special” is that it is the only 60-
atom fullerene which satisfies the isolated pentagon rule,
i.e., there are no adjacent pentagons in the structure. In
the buckyball every pentagon is completely surrounded
by hexagons, which is what minimizes the local curvature
and thus the strain energy of this structure. Stone and
Wales [30] proposed a basic transformation for ring rear-
rangement in a fullerene cage which provides a mechanism
for the stepwise conversion of most of the fullerene isomers
of C60 into the most stable, buckyball, structure. The nec-
essary last step before reaching the buckyball structure is
isomer B of C60 (see Fig. 2) which is obtained from the
buckyball by performing a single Stone-Wales transforma-
tion [31]. This isomer (having C2v symmetry) contains two
pairs of adjacent pentagons and is 0.8 eV higher in energy
than the buckyball. (The LDA calculation performed by
Yi and Bernholc [32] gives an energy difference of 1.6 eV.)
The loss of stability of isomer B of C60 with respect to the
buckyball can be related to the formation of two pairs of

adjacent pentagons with the consequent local increase in
the curvature and in the strain energy (see Tab. 1).

Besides the perfect fullerenes, we have found many
fullerene-based isomers of C60 which are produced by
opening one or several windows in a fullerene cage (a selec-
tion of those isomers is shown in Fig. 2). The strain energy
released by opening one window in a fullerene cage does
not compensate the formation of dangling bonds and thus
the open-window isomers are higher in energy than the
corresponding perfect fullerenes (see Fig. 2 and Tab. 1).
The net cost of opening one window between two adja-
cent pentagons in isomer B of C60 is 0.316 eV whereas
the cost of opening one window between a pentagon and
a hexagon is much higher (2.207 eV in isomer B and 2.297
eV in the buckyball (isomer A)). This clearly shows that
there is a local loss of stability in a fullerene cage due to the
presence of adjacent pentagons. Isomers with two or more
open windows are higher in energy than the one-window
isomers. As the number of open windows increases, the
fullerene structure becomes less apparent. These higher-
lying isomers can be characterized as distorted cage struc-
tures containing large rings or as even more open struc-
tures intermediate between a tube and a deformed bowl
(see structures K and L of Fig. 2). Graphene-like isomers,
e.g., J structure of Figure 2, are at least 6.2 eV above the
minimum energy structure. The large number of dangling
bonds present in these structures is responsible for their
relatively high energy.

From the previous presentation it is apparent that the
minimum energy structures as well as the isomer hierar-
chy of CN clusters (N ≤ 60) can be interpreted in terms
of two simple concepts, i.e., the strain energy of a curved
surface, on one hand, and the number of dangling bonds
in the cluster, on the other hand. Carbon clusters tend to
form cage structures in order to minimize the number of
dangling bonds. The price to pay is the strain energy as-
sociated with the curvature of the cluster surface. Clearly,
the strain energy (per atom) is larger for smaller cluster
sizes. The trade off between these two effects will deter-
mine the energy ordering of the different structures. Thus,
small clusters prefer planar structures with no curvature
although the relative number of dangling bonds is high
(nine in the case of C13). By the size of 20 atoms it is
already favorable to curve a little the structure forming a
bowl, reducing by two the number of dangling bonds with
respect to the planar isomer. For C32 the fullerene isomer,
with no dangling bonds, is lower in energy than the bowl
structure which has ten dangling bonds. But the strain
energy of this small fullerene is still quite high. Opening
four windows in the cage creates eight dangling bonds.
However, it also releases a large amount of strain en-
ergy which results in lowering the energy of the cage with
windows. For C60 the fullerene isomers, with no dangling
bonds, are more stable than more open structures, includ-
ing the graphitic-like isomers. Among the C60 fullerenes,
the buckyball is the lowest one since it minimizes the local
curvature across the fullerene surface due to the absence
of pairs of adjacent pentagons.
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3.2 Thermal behaviour

To investigate the finite-temperature behaviour of small
carbon clusters and fullerenes we have performed constant
energy molecular dynamics simulations over a wide range
of cluster energies corresponding to cluster temperatures
ranging from T = 0 K up to T ∼ 5000 K, when the
thermal decomposition (fragmentation or evaporation) of
the cluster occurs. By scanning over cluster energies we
generate the equation of state of the cluster, also called
the caloric curve, which gives the thermal response of the
cluster to an increase in energy, i.e., the cluster tempera-
ture as a function of its total energy. The cluster energy
is stepwise increased by scaling up (with a scaling factor
between 1.1 and 1.5) the velocities of all the atoms in the
cluster between successive MD runs of 20 to 50 ps each.
The starting point for the heating up process is a zero
temperature configuration of the cluster corresponding to
either the minimum energy structure or some selected iso-
mer. Different isomers give rise to different branches of the
caloric curve. For a given total energy of the cluster the
dynamical temperature is defined in the usual way in dy-
namical simulations

kBT =
2

3n− 6
〈Ekin〉t , (9)

i.e., the time average (represented by 〈 〉t), over the entire
trajectory, of the instantaneous kinetic energy Ekin of the
cluster per degree of freedom equals half of the thermal
energy given by kBT . kB is the Boltzman constant and n is
the number of atoms in the cluster. Clearly this definition
of cluster temperature implicitly assumes that the cluster
remains as a single cohesive (unfragmented) entity along
the whole trajectory.

Figure 3 shows the branches of the caloric curve of
C20 generated from the bowl minimum energy structure
(geometry A of Fig. 1), the fullerene isomer (geometry
C), and a piece of diamond (geometry D), respectively,
and the branches of the caloric curve of C60 generated
from the buckyball minimum energy structure (geometry
A of Fig. 2) and isomers B and D. The horizontal sepa-
ration between branches at zero temperature corresponds
to the energy difference between the corresponding iso-
mers. The low-temperature behaviour of the clusters is
quasi-harmonic (as expected from a classical treatment)
and the cluster temperature increases linearly with in-
creasing total energy at the rate given by the equiparti-
tion theorem. For comparison we have plotted in Figure 3
the “harmonic” caloric curves for n = 20 and 60. Clearly
the clusters behave as solid-like at low temperatures. The
atoms perform oscillations around their equilibrium po-
sitions without changing the overall shape of the cluster.
As the temperature is increased the caloric curves start to
deviate from the harmonic limit. This indicates that the
contribution of the anharmonic part of the potential is
already significant. Superimposed on this continuous and
smooth change in slope we observe abrupt jumps in some
branches of the caloric curves occurring at well defined val-
ues of the total energy. At still higher temperatures the
caloric curves lose completely their smooth (apart from

Fig. 3. Caloric curves of C20 and C60. The branches of the
caloric curve of C20 are generated from the bowl (minimum
energy structure, isomer A of Fig. 1), the fullerene (structure
C) and diamond-like (structure D) isomers. The full arrows in-
dicate the first isomerization transition found in each isomer:
(a) a window opens in the bowl structure, (b) a window opens
in the fullerene isomer, and (c) the diamond-like isomer trans-
forms into a tube-like structure. Arrows (1) to (5) refer to data
presented in Figure 6. The branches of the caloric curve of C60

are generated from the buckyball (minimum energy structure,
isomer A of Fig. 2) and isomers B and D. The full arrows indi-
cate the first isomerization transition found in each isomer: (a)
a window opens in the buckyball structure, (b) a window opens
in isomer B, and (c) isomer D transforms into the buckyball.
The harmonic limit is also shown as a solid line (see text for
further explanation).

the well defined jumps) almost linear behaviour. All the
branches of the caloric curve of a given cluster size tend
to merge together in a single “noisy” curve. Notice that
the caloric curves end up (i.e., cluster fragmentation or
evaporation occurs) before recovering an almost constant
slope regime, common to all the branches, which would
correspond to the liquid-like phase of the clusters.

The changes in the slope of the caloric curves are
clearly reflected in the specific heat. Instead of consid-
ering the “usual” definition of specific heat, i.e., variation
of energy with temperature per atom, we consider here
the specific heat per degree of freedom given by

cv =
1

(3n− 6)

dE

dT
. (10)

Figure 4 shows the specific heat per degree of freedom
of the minimum energy structures of C13, C20, C32, and
C60. At low temperatures and for all cluster sizes, cv goes
exactly to the classical (harmonic) limit, i.e., cv = kB [33].

The different features in the caloric curves can be cor-
related with structural changes of the clusters, i.e., iso-
merization and phase transitions. However, from solely the
caloric curves it is not possible to extract information on
the type of structural transformations being experienced
by the clusters as their temperature is increased. A mea-
sure and characterization of the movements of the atoms
and of the associated structural changes in the cluster is
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Fig. 4. Specific heat per degree of freedom (dof) as a function
of cluster temperature of the minimum energy structures of
C13, C20, C32, and C60. The dashed lines indicate the classical
limit cv(per dof) = kB (see text).

given by the relative root mean square bond length fluc-
tuation δ

δ =
2

n(n− 1)

∑
i<j

(
〈r2
ij〉t − 〈rij〉

2
t

) 1
2

〈rij〉t
, (11)

where rij is the instantaneous distance between atoms i
and j and the sum runs over all the pairs of atoms in the
cluster. The interpretation of δ is based on the Lindemann
criterion. Small (< 10%) values of δ correspond to solid-
like clusters with well defined structures, large (> 20%)
values of δ correspond to liquid-like clusters in which the
atoms perform diffusive types of motions, and a sharp in-
crease (over a finite-temperature range) of the magnitude
of δ between those limiting values is the signature of the
solid-to-liquid phase transition.

Figure 5 shows δ as a function of cluster energy for
the same isomers of C20 and C60 considered in Figure 3.
There is a correlation between the features in the caloric
curves and the behaviour of the corresponding δ-curves.
At low temperatures the value of δ is small (< 10%) in
agreement with a solid-like cluster. The discontinuities ex-
hibited by several branches of the caloric curves, originat-
ing in isomers other than the minimum energy structure,
at intermediate temperatures are reflected as small peaks
or discontinuities in the corresponding δ-curves. The small
value of δ in the peaks and discontinuities rule out their
interpretation as a solid-to-liquid phase transition of the
clusters. They arise from isomerization transitions which
take the clusters from higher- to lower-energy regions of
the configuration space with the corresponding increase
in cluster temperature. Moreover the smooth behaviour
of both the caloric and the δ-curves after the transition
seems to indicate that the cluster keeps a solid-like charac-
ter about a lower-energy isomer. At high temperatures the
value of δ increases steeply, which correlates with the ir-
regular behaviour of the caloric curves in this temperature

Fig. 5. Root mean square bond length fluctuation, δ, as a
function of cluster energy for the same isomers of C20 and C60

considered in Figure 3. The full arrows have the same meaning
as in that figure.

range. The sharp increase of δ is characteristic of the solid-
to-liquid phase transition. However, there is not a high-
temperature range characterized by a high value of δ, in
clear correspondence with the lack of a high-temperature
constant slope regime in the caloric curves. This reflects
that “free” carbon clusters start to evaporate atoms or C2

or C3 units before fully developing a liquid-like phase. The
lack of a fully developed liquid-like phase in small carbon
clusters is in contrast with the presence of a well devel-
oped liquid-like phase in small “free” Lennard-Jones and
metallic clusters. The phase diagram of bulk carbon shows
that the liquid phase exists only under pressure. Similarly
one can find a liquid-like phase in small carbon clusters
by enclosing them in a box simulating the conditions of
clusters under pressure.

Dynamical aspects of the finite-temperature behaviour
of small carbon clusters can also be investigated. One can
follow the structural changes of the clusters as a func-
tion of time by recording the time evolution of some dy-
namical magnitude sensitive to the cluster structure. One
such magnitude is the short-time-averaged kinetic energy
(〈Ekin〉sta). The time average is performed over a short
period of time (typically 0.1 ps which is the time cor-
responding to a few characteristic vibrational periods of
the cluster) to damp down the fluctuations in the kinetic
energy due to the vibrational motions. Therefore, for a
given total energy of the cluster, the value of 〈Ekin〉sta or,
equivalently, the value of 〈V 〉sta (since the total energy is
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Fig. 6. Time-dependent short-time-averaged kinetic energy for
several trajectories extracted from the branch of the caloric
curve of C20 originating in the fullerene isomer. The trajecto-
ries ((1) to (5)) are indicated by an empty arrow on Figure 3.
The total energies per atom (in eV) of these trajectories are:
(1) −5.33, (2) −5.31, (3) −5.21, (4) −5.01, and (5) −4.43. (For
the definition of the short time averages and the explanation
of the jumps in the individual trajectories see text.)

constant, 〈Ekin〉sta and 〈V 〉sta are complementary quanti-
ties) characterizes each well of the potential energy sur-
face, that is, each isomeric form of the cluster. Changes in
the value of 〈Ekin〉sta, besides small remnant fluctuations,
correspond to structural transformations, i.e., isomeriza-
tion transitions. To clearly identify the structural transfor-
mations taking place as a function of cluster energy as well
as the isomers involved in those transformations, we com-
bine, for many trajectories along the different branches
of the caloric curves of C20 and C60, the study of the
time dependence of 〈Ekin〉sta with a thermal quenching
analysis (see Sect. 3.1 above) of those trajectories. As an
illustration, Figure 6 shows the time dependence of the
short-time-averaged kinetic energy for several trajectories
(corresponding to different total energies of the cluster)
selected from the branch of the caloric curve of C20 origi-
nating in the fullerene isomer. 〈Ekin〉sta is a piecewise con-
stant function. The thermal quenching analysis confirms
that the discontinuities in 〈Ekin〉sta arise from isomeriza-
tion transitions in the cluster and that a single isomer
defines the cluster dynamics within each finite-size time
interval with a constant value of 〈Ekin〉sta. At low ener-
gies (see trajectory (1) of Fig. 6) 〈Ekin〉sta presents only
small fluctuations around a constant value which charac-
terizes the isomer generating the corresponding branch of
the caloric curve. For each isomer, the lower-energy trajec-

tory in which a structural change of the cluster takes place
has been indicated by a full arrow in the caloric curves
(Fig. 3) and, correspondingly, in the δ-curves (Fig. 5). No-
tice that for a given cluster size the minimum energy struc-
ture is more “resistant” to structural changes than higher-
lying isomers, i.e., higher temperatures (or energies) are
required for thermally exciting isomerization transitions in
the former than in the latter isomers. This empirical rule
may be relevant for understanding the formation mecha-
nism of different cluster structures.

The thermal quenching analysis shows that the first
isomerization transition experienced by the bowl and the
fullerene isomers of C20 and the buckyball and isomer B
of C60 are, all of them, driven by the open-window mech-
anism. These structural changes of the clusters are clearly
seen in the time dependent 〈Ekin〉sta (see, e.g., trajectory
(2) of Fig. 6). Surprisingly, however, most of these iso-
merization transitions do not produce appreciable features
neither in the caloric curves (Fig. 3) nor in the δ-curves
(Fig. 5). The reason is two-fold: on one hand opening a
window is a “local” structural change which does not in-
volve diffusive-type motions of the atoms in the cluster
and, consequently, the value of δ remains small. On the
other hand, as is apparent from the 〈Ekin〉sta curves, the
time spent by the cluster in the higher-energy (lower ki-
netic energy) open-window isomer is only a small frac-
tion of the total time of the trajectory. The time averages
over entire trajectories do not reflect, then, the distinct
dynamics of the open-window isomer. The first isomer-
ization transition experienced by isomer D of C60 is also
driven by the open-window mechanism. This transition
transforms isomer D into the buckyball minimum energy
structure of C60. Although this isomerization transition
involves only a “local” structural change in the cluster
it produces a noticeable effect (a sharp jump up) in the
caloric curve (Fig. 3) and a small discontinuity in the δ-
curve (Fig. 5) because once the transition takes place the
cluster stays in the buckyball structure, i.e., the transition
is not reversible within the time scale of our simulation
run. Therefore the energies lower than the isomerization-
transition energy reflect the dynamics of the D isomer
whereas higher energies reflect the dynamics of the bucky-
ball structure. The increase in temperature at the energy
of the isomerization transition reflects the difference be-
tween the depths of the potential wells of the two isomers,
D and A, respectively. The first structural change of the di-
amond isomer of C20 involves the break up of many bonds
giving rise to a tubular structure. Similarly to the case
of the D isomer of C60, this isomerization transition is
not a reversible process and well defined features appear
both in the caloric (Fig. 3) and in the δ-curves (Fig. 5)
associated with this transformation. Another example of
a relatively low-temperature nonreversible isomerization
transition process is the stepwise transformation of the
fullerene isomer of C20 into a cage structure with five open
windows and D5h symmetry (trajectory (3) of Fig. 6).
The stair-like behaviour of 〈Ekin〉sta arises from successive
open-window isomerization transitions. A window mech-
anism has been proposed for explaining the formation of
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endohedral fullerenes [34,35]. Our simulations show that
the structures with open windows are metastable states
of the clusters with a finite lifetime that provides further
support for that mechanism. All the isomers here consid-
ered (other than the minimum energy structures) present
low-temperature isomerization transitions towards lower-
energy isomers which means that all these higher-lying
isomers are “directly” connected to lower-energy regions
of the potential energy surface. This property of the topog-
raphy of the potential energy surface of small carbon clus-
ters and fullerenes will, certainly, play an important role
in the annealing of the clusters. However, the existence
of mechanisms (as the open-window mechanism presented
here) driving low-temperature structural transformations
of the clusters is not a specific feature of carbon clusters.
For instance a floater-vacancy mechanism [36] has been
described (in Lennard-Jones and metallic clusters) giving
rise to the melting of the cluster surface at lower tem-
peratures than the homogeneous melting of the cluster. It
has also been shown that an atom-exchange mechanism is
responsible for the premelting stage found in some small
metal clusters [37].

At a relatively high energy the branch of the caloric
curve of C60 originating in the buckyball jumps down
and joins the branch of the caloric curve originating in
isomer B. At this energy the open-window isomerization
transitions are quite frequent. The abrupt change in the
buckyball branch of the caloric curve is not produced,
however, by these open-window isomerization transitions
but by the Stone-Wales transformation. As we have men-
tioned in Section 3.1 the Stone-Wales transformation is
a process for ring rearrangement in a fullerene cage and
it has been proposed [30] as the basic process for an-
nealing fullerene structures down to their corresponding
ground states. This transformation, however, has been
shown to have a quite high (6-7 eV) activation barrier [32]
that could prevent it from being an efficient annealing
mechanism for fullerenes. The thermal quenching anal-
ysis of the trajectory in which this transformation oc-
curs reveals that the mechanism of the Stone-Wales pro-
cess involves isomerization transitions through intermedi-
ate isomers which connect the buckyball structure of C60

with isomer B. A multi-step process, as the thermally ex-
cited mechanism found here for the Stone-Wales trans-
formation, was completely unexpected on the grounds
of the structural optimizations performed by other au-
thors [32,38,39]. What is probably more noticeable about
the multi-step mechanism proposed here is that the step-
to-step isomerization transition barriers are substantially
smaller (none of them exceeds 2.6 eV) than the one for the
global process (5.58 eV). As a consequence the interme-
diate metastable isomers connecting two fullerene struc-
tures may play an important role in defining the kinetics
of the annealing process without relying on an autocatal-
ysis mechanism [38]. A detailed description of the multi-
step mechanism of the Stone-Wales transformation of the
buckyball and the intermediate isomers involved in it has
been given elsewhere [40].

From 〈Ekin〉sta (see, e.g., trajectories (4) and (5) of
Fig. 6) it is also apparent that as the cluster energy is
increased the isomerization transitions become more and
more frequent and involve more and more isomers. How-
ever, only when the energy range corresponding to the
solid-to-liquid phase transition is reached do these increas-
ingly frequent isomerizations produce a sharp increase in
the value of δ and the collapse of all the branches of the
caloric curve of a given cluster size. The thermal quench-
ing procedure reveals that, even at the elevated tempera-
tures involved at the end of the transition region, there are
some isomers that are thermally isolated from each other
(at least within the time scale of our simulation runs),
i.e., there is not a thermally activated pathway of iso-
merization transitions connecting them. This behaviour
is another manifestation of the lack of a fully developed
liquid-like phase in small carbon clusters. As an empiri-
cal rule we find that bowl-type and graphitic-like struc-
tures do not close into cage- or fullerene-like structures
even though the reverse processes have been observed in
our simulations. As an illustration Figure 7 shows a few
representative snapshots, extracted from the simulations,
of the thermally excited transformation of the buckyball
structure of C60 into an “almost perfect” graphene sheet.

As we have mentioned above, in our simulations clus-
ter fragmentation or evaporation occurs before the car-
bon clusters have fully developed a liquid-like phase. How-
ever, several high-temperature phases of carbon clusters,
including the liquid-like phase [16,18] and a pretzel and
a linked chains phase [17], have been described by other
authors. Those phases are similar to the state of the clus-
ters we find by the end of the solid-to-liquid transition
region and none of them is thermally stable, i.e., cluster
fragmentation will occur if one waits long enough. There-
fore, in our view, it would be more adequate to talk about
“the solid-to-liquid transition region” instead of about a
“distinct cluster phase”. The thermal decomposition (frag-
mentation) of the cluster defines the end of the transition
region. The actual range and extent of the transition re-
gion depend both on the heating rate and the length of
the simulation runs. One should bear in mind that only
those processes (either isomerization transitions or cluster
fragmentation) with a lifetime of the order of or smaller
than the simulation time will be observed in a MD run.
On the other hand, since the reaction rates (inverse of the
lifetimes) increase with energy, the temperature at which
a certain process is observed in a simulation is largely de-
termined by the simulation time. The clear implication is
that, since the time scale of any simulation is shorter (by
several orders of magnitude) than the experimental time
scale, the predicted [15] melting or fragmentation temper-
atures will be larger than the experimental ones.

The thermal stability and fragmentation kinetics of
C60 molecules in the gas phase has been measured di-
rectly [12] in the temperature range of 1100–1970 K on
the millisecond time scale. These experiments provide an
activation energy for the fragmentation process of E0 =
4.0±0.3 eV. On the other hand, experiments on the ther-
mal decomposition of C60 in the solid state [13,14] yield
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Fig. 7. Snapshots of the structural transformation of C60 from
the buckyball minimum energy structure to a graphene-like
structure. The frames have been extracted from the dynamical
simulation runs at several temperatures: A: T = 2500 K, B:
T = 3800 K, C: T = 4200 K, D: T = 4600 K, and E: T =
4700 K [23].

still lower activation energies (2.7 eV) for the unimolecu-
lar decay of the C60 molecule. These small values of the
activation energy are inconsistent with the endothermicity
(estimated in 10-13 eV [32,39]) of the dissociation reac-
tion: C60 → C58 +C2, which is the primary fragmentation
pathway of C60 [41]. As a tentative explanation it has
been suggested [12,13] that the thermal fragmentation of
C60 does not proceed directly from the buckyball mini-
mum energy structure but rather it is a two-step process.
The first step consisting of the structural transformation
of C60. Cluster fragmentation occurs, then, in a second
step from a thermally excited isomeric form of C60.

We can estimate the activation energy for fragmenta-
tion from a high-energy isomer. In the simulation origi-
nating in the buckyball, fragmentation of the molecule is
observed at an excitation energy of 89 eV (this energy
has been measured from isomer J of Fig. 2, since in this
particular simulation C60 fragmented from a graphene-
like isomer). The lifetime of the thermally excited C60

molecule (at this excitation energy) is of the order of the
length of each individual simulation run (20 ps). Then, the
rate constant (inverse of the lifetime) for fragmentation is

K = 0.05 ps−1. In the RRK (Rice-Ramsperger-Kassel)
model (the simplest statistical approach to unimolecular
processes [42]) the rate constant as a function of excitation
energy E is given by

K(E) = ν

(
E −E0

E

)s−1

, (12)

where E0 is the activation energy, s is the number of vibra-
tional degrees of freedom, and ν is a frequency proportion-
ality factor. Taking ν = 800 cm−1 which is a characteristic
frequency for carbon, we obtain from equation (12) an ac-
tivation energy of E0 = 3.1 eV which is in fair agreement
with the experimental results. Our simulations, then, pro-
vide full support to the two-step mechanism for the ther-
mal decomposition of C60. As we have shown, the thermal
excitation of C60 produces profound structural changes in
this molecule, and cluster fragmentation takes place from
a high-energy configuration of the molecule. Moreover, the
activation energy for this two-step fragmentation process
comes out lower than (less than half) the one-step frag-
mentation energy for the minimum energy structure, in
agreement with the experiments.

A quite different result is obtained, however, in laser-
induced dissociation experiments [41]: C2 units are ejected
from fullerene cages preserving the cage structure of the
carbon clusters. MD simulations of fullerene fragmenta-
tion [43] in which the excitation energy is suddenly de-
livered into the fullerene cage also produce ejection of C2

directly from the fullerene cage. This one-step fragmen-
tation mechanism is in contrast with the two-step ther-
mal decomposition of fullerenes described above. In our
view, the fragmentation mechanism actually followed by
the clusters is largely determined by the rate at which the
excitation energy is delivered into the cluster. At high exci-
tation energies cluster reconstruction and cluster fragmen-
tation are two competing processes. Slow heating rates of
the clusters allow for cluster reconstruction prior to frag-
mentation (two-step process) whereas a fast increase in
the cluster temperature will produce fragmentation (one-
step process) before any structural transformation of the
cluster takes place.

4 Conclusions

This paper has been devoted to the theoretical study of the
thermal properties of small carbon clusters and fullerenes.
We have performed constant energy Molecular Dynam-
ics simulations over a wide range of temperatures rang-
ing from T = 0 K to T ∼ 5000 K. The interactions
between the carbon atoms in the clusters are mimicked
by the many-body semi-empirical Tersoff potential. This
potential has proved reliable for describing the covalent
bond in carbon systems. We have obtained about 50 to
100 different isomers for each cluster size by applying the
thermal quenching procedure. The underlying rules de-
termining the minimum energy structures as well as the
isomer hierarchy of carbon clusters are, on the one hand,
minimization of the strain energy (due to the curvature
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of the cluster surface) which opposes the formation of
cage structures and, on the other hand, minimization of
the number of dangling bonds in the cluster which favors
the cage isomers. The knowledge of the possible isomeric
forms of the clusters helps in the interpretation of the
phases and phase changes in the clusters. The thermal
(i.e., caloric curve, δ, and specific heat) and the dynam-
ical (i.e., time-dependent short-time-averaged kinetic en-
ergy) characteristics of carbon clusters and fullerenes have
been analyzed as a function of temperature, not only for
the minimum energy structures but also for some selected
isomers. The low-temperature thermal behaviour of the
clusters is fully characterized by the classical (harmonic)
limit. Isomerization transitions are observed at tempera-
tures lower than the ones corresponding to the melting-like
transition region. Moreover, higher-lying isomers begin to
experience structural transformations at lower tempera-
tures than the corresponding minimum energy structures.
These low-temperature isomerization transitions observed
in higher-lying isomers drive the clusters from higher- to
lower-energy regions of the potential energy surface and,
consequently, they are not reversible within the time scale
of our simulation runs. The topography of the potential
energy surface (the higher-lying isomers are directly con-
nected to lower-lying isomers) together with the possibil-
ity of low-temperature isomerization transitions may be
key elements for understanding the annealing processes in
clusters, for instance why the buckminsterfullerene is the
only isomer of C60 which has been isolated in macroscopic
quantities. We have also found that carbon clusters do not
fully develop a liquid-like phase. However, cluster recon-
struction plays an important role in the thermal decom-
position of the clusters. Our simulations support the in-
terpretation of the thermal decomposition of carbon clus-
ters as a two-step process. First the structural transforma-
tion of the cluster takes place and then cluster fragmenta-
tion occurs from a high-energy configuration. Combining
the simulation results with a simple statistical model for
unimolecular processes we find an activation energy for
the thermal decomposition of C60 in fair agreement with
the experimental data. We cannot rule out other possi-
ble mechanisms (for instance decomposition in one step
directly from the ground state) for the decomposition of
carbon clusters. However, it seems that the fragmenta-
tion mechanism is determined by the nature of the excita-
tion process. Thermal decomposition (slow heating rate)
would proceed in two steps whereas laser-induced disso-
ciation (sudden delivery of the excitation energy) would
proceed in one step. This seems to indicate that the for-
mation of different carbon structures could be favored by
using different cooling rates. Clearly more work is needed
for understanding and characterizing the growth mecha-
nisms leading to the formation of different carbon-based
structures.
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